
RMarkdown for writing reproducible scientific pa-
pers
Mike Frank & Chris Hartgerink

2017-07-31

Introduction

This document is a short tutorial on using RMarkdown to mix prose
and code together for creating reproducible scientific documents.1 1 There is also a slidedeck that goes

along with this handout available here,
which is worth looking at if you don’t
know what you’re doing on this page
and what to look at. Going through
this document takes at most two hours,
assuming you already know some basic
R programming. If you find any errors
and have a Github account, please
suggest changes here. All content is
CC 0 licensed, so feel free to remix and
reuse!

The tutorial is based on documents that both Chris and Mike
wrote independently (see here and here if you’re interested). In short:
RMarkdown allows you to create documents that are compiled with
code, producing your next scientific paper.2

2 Note: this is also possible for Python
and other open-source data analysis
languages, but we focus on R.

Now we’re together trying to help spread the word, because it can
make writing manuscripts so much easier! We wrote this handout in
RMarkdown as well (looks really sweet, no?).

Who is this aimed at?

We aim this document at anyone writing manuscripts and using R,
including those who. . .

1. . . . collaborate with people who use Word
2. . . . want to write complex equations
3. . . . want to be able to change bibliography styles with less hassle
4. . . . want to spend more time actually doing research!

Why write reproducible papers?

Cool, thanks for sticking with us and reading up through here!
There are three reasons to write reproducible papers. To be right,

to be reproducible, and to be efficient. There are more, but these are
convincing to us. In more depth:

1. To avoid errors. Using an automated method for scraping APA-
formatted stats out of PDFs, Nuijten et al. [2016] found that over
10% of p-values in published papers were inconsistent with the
reported details of the statistical test, and 1.6% were what they
called “grossly” inconsistent, e.g. difference between the p-value
and the test statistic meant that one implied statistical significance
and the other did not. Nearly half of all papers had errors in them.

2. To promote computational reproducibility. Computational re-
producibility means that other people can take your data and
get the same numbers that are in your paper. Even if you don’t

mailto:mcfrank@stanford.edu
mailto:chris@libscie.org
https://libscie.github.io/rmarkdown-workshop
https://github.com/libscie/rmarkdown-workshop/edit/master/handout.Rmd
https://github.com/libscie/rmarkdown-workshop/edit/master/handout.Rmd
https://github.com/libscie/rmarkdown-workshop
https://elifesciences.org/labs/cad57bcf/composing-reproducible-manuscripts-using-r-markdown
http://babieslearninglanguage.blogspot.com/2015/11/preventing-statistical-reporting-errors.html


rmarkdown for writing reproducible scientific papers 2

have errors, it can still be very hard to recover the numbers from
published papers because of ambiguities in analysis. Creating
a document that literally specifies where all the numbers come
from in terms of code that operates over the data removes all this
ambiguity.

3. To create spiffy documents that can be revised easily. This is ac-
tually a really big neglected one for us. At least one of us used to
tweak tables and figures by hand constantly, leading to a major
incentive never to rerun analyses because it would mean re-pasting
and re-illustratoring all the numbers and figures in a paper. That’s
a bad thing! It means you have an incentive to be lazy and to
avoid redoing your stuff. And you waste tons of time when you
do. In contrast, with a reproducible document, you can just rerun
with a tweak to the code. You can even specify what you want
the figures and tables to look like before you’re done with all the
data collection (e.g., for purposes of preregistraion or a registered
report).

Learning goals

By the end of this class you should:

• Know what Markdown is and how the syntax works,
• See how to integrate code and data in RMarkdown,
• Understand the different output formats from RMarkdown and

how to generate them, and
• Know about generating APA format files with papaja and bibtex.

Getting Started

Installation

Before we get started with running everything, make sure to have
R installed (download here) and Rstudio (download here). If you
haven’t yet, go do that first and we’ll be here when you get back!

Exercise

Great, you installed both R and Rstudio! Next up, making your first
RMarkdown file.

Fire up Rstudio and create a new RMarkdown file. Don’t worry
about the settings, we’ll get to that later.

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/#download


rmarkdown for writing reproducible scientific papers 3

If you click on “Knit” (or hit CTRL+SHIFT+K) the RMarkdown file
will run and generate all results and present you with a PDF file,
HTML file, or a Word file. If RStudio requests you to install packages,
click yes and see whether everything works to begin with.

We need that before we teach you more about RMarkdown. But
you should feel good if you get here already, because honestly, you’re
about 80% of the way to being able to write basic RMarkdown files.
It’s that easy.

Structure of an RMarkdown file

An RMarkdown file contains several parts. Most essential are the
header, the body text, and code chunks.

Header

Headers in RMarkdown files contain some metadata about your
document, which you can customize to your liking. Below is a simple
example that purely states the title, author name(s), date3, and output 3 Pro-tip: you can use the Sys.Date()

function to have that use the current
date when creating the document.

format.

---

title: "Untitled"

author: "NAME"

date: "July 28, 2017"

output: html_document

---

For now, go ahead and set html_document to word_document, ex-
cept if you have strong preferences for HTML or PDF.4 4 Note: to create PDF documents you

also need a TeX installation. Don’t
know what that is? You probably don’t
have it then. More info below.



rmarkdown for writing reproducible scientific papers 4

Body text

The body of the document is where you actually write your re-
ports. This is primarily written in the Markdown format, which is
explained in the Markdown syntax section.

The beauty of RMarkdown is, however, that you can evaluate R

code right in the text. To do this, you start inline code with ‘r, type
the code you want to run, and close it again with a ‘. Usually, this
key is below the escape (ESC) key or next to the left SHIFT button.

For example, if you want to have the result of 48 times 35 in your
text, you type ‘ r 48-35‘, which returns 13. Please note that if you
return a value with many decimals, it will also print these depending
on your settings (for example, 3.1415927).

Code chunks

In the section above we introduced you to running code inside text,
but often you need to take several steps in order to get to the result
you need. And you don’t want to do data cleaning in the text! This
is why there are code chunks. A simple example is a code chunk
loading packages.

First, insert a code chunk by going to Code->Insert code chunk or
by pressing CTRL+ALT+I. Inside this code chunk you can then type for
example, library(ggplot2) and create an object x.

library(ggplot2)

x <- 1 + 1

If you do not want to have the contents of the code chunk to be
put into your document, you include echo=FALSE at the start of the
code chunk. We can now use the contents from the above code chunk
to print results (e.g., x = 2).

These code chunks can contain whatever you need, including
tables, and figures (which we will go into more later). Note that all
code chunks regard the location of the RMarkdown as the working
directory, so when you try to read in data use the relative path in.

Exercises

Switch over to your new RMarkdown file.

1. Create a code chunk. In it, use write.csv(USArrests, "USArrests.csv")

to write out some data to your hard drive. Subsequently, find that
file on your computer. Where is it?5 5 RMarkdown files operate out of the

directory in which they are located.
If you read in data, it’s important to
write paths relatively starting from
that “project root” directory, instead of
absolute – otherwise when you share
the file the paths will all be wrong.
Similarly, if you write out data they go
in the root directory.



rmarkdown for writing reproducible scientific papers 5

2. Load the ggplot2 package (or any other that you use frequently)
in a code chunk and regenerate the document. Now try load some
packages you’ve never heard of, like adehabitatHS or QCA. What
happens?6 6 We like to load all our packages at

the top of the document so it’s easy to
know what you need to install to make
it run.Markdown syntax

Markdown is one of the simplest document languages around, that is
an open standard and can be converted into .tex, .docx, .html, .pdf,
etc. This is the main workhorse of RMarkdown and is very powerful.
You can learn Markdown in five (!) minutes Other resources include
http://rmarkdown.rstudio.com/authoring_basics.html, and this
cheat sheet.

You can do some pretty cool tricks with Markdown, but these are
the basics:

• It’s easy to get *italic* or **bold**.
• You can get headings using # heading1 for first level, ## heading2

for second-level, and ### heading3 for third level.
• Lists are delimited with * for each entry.
• You can write links by writing [here's my link](http://foo.com).

If you want a more extensive description of all the potential of
Markdown, this introduction to Markdown is highly detailed.

Exercises

Swap over to your new sample markdown.

1. Outlining using headings is a really great way to keep things
organized! Try making a bunch of headings, and then recompiling
your document.

2. Add a table of contents. This will involve going to the header of
the document (the YAML), and adding some options to the html

document bit. You want it to look like this (indentation must to be
correct):

output:

html_document:

toc: true

Now recompile. Looks nice, right?7 7 Pro-tip: you can specify how deep the
TOC should go by adding toc_depth:

2 to go two levels deep
3. Try adding another option: toc_float: true. Recompile – super

cool. There are plenty more great output options that you can
modify. Here is a link to the documentation.

https://learnxinyminutes.com/docs/markdown/
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://daringfireball.net/projects/markdown/
http://rmarkdown.rstudio.com/html_document_format.html


rmarkdown for writing reproducible scientific papers 6

Adding more code (Tables and Graphs)

We’re going to want more libraries loaded (for now we’re loading
them inline).

library(knitr)

library(ggplot2)

library(broom)

library(devtools)

We often also add chunk options to each code chunk so that, for
example:

• code does or doesn’t display inline (echo setting)
• figures are shown at various sizes (fig.width and fig.height

settings)
• warnings and messages are suppressed (warning and message

settings)
• computations are cached (cache setting)

There are many others available as well. Caching can be very
helpful for large files, but can also cause problems when there are
external dependencies that change. An example that is useful for
manuscripts is:

opts_chunk$set(fig.width = 8, fig.height = 5,

echo = TRUE, warning = FALSE, message = FALSE,

cache = TRUE)

Graphs

It’s really easy to include graphs, like this one. (Using the mtcars

dataset that comes with ggplot2).

qplot(hp, mpg, col = factor(cyl), data = mtcars)



rmarkdown for writing reproducible scientific papers 7

10

15

20

25

30

35

100 200 300

hp

m
pg

factor(cyl)

4

6

8

All you have to do is make the plot and it will render straight into
the text.

External graphics can also be included, as follows:

knitr::include_graphics("path/to/file")

Tables

There are many ways to make good-looking tables using RMark-
down, depending on your display purpose.

• The knitr package (which powers RMarkdown) comes with the
kable function. It’s versatile and makes perfectly reasonable tables.
It also has a digits argument for controlling rounding.

• For HTML tables, there is the DT package, which provides datatable

– these are pretty and interactive javascript-based tables that you
can click on and search in. Not great for static documents though.

• For APA manuscripts, it can also be helpful to use the xtable

package, which creates very flexible LaTeX tables. These can be
tricky to get right but they are completely customizable provided
you want to google around and learn a bit about tex.

We recommend starting with kable:

kable(head(mtcars), digits = 1)

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.9 2.6 16.5 0 1 4 4

Mazda RX4 Wag 21.0 6 160 110 3.9 2.9 17.0 0 1 4 4

Datsun 710 22.8 4 108 93 3.8 2.3 18.6 1 1 4 1



rmarkdown for writing reproducible scientific papers 8

mpg cyl disp hp drat wt qsec vs am gear carb

Hornet 4 Drive 21.4 6 258 110 3.1 3.2 19.4 1 0 3 1

Hornet Sportabout 18.7 8 360 175 3.1 3.4 17.0 0 0 3 2

Valiant 18.1 6 225 105 2.8 3.5 20.2 1 0 3 1

Statistics

It’s also really easy to include statistical tests of various types.
For this, an option is the broom package, which formats the out-

puts of various tests really nicely. Paired with knitr’s kable you can
make very simple tables in just a few lines of code.

mod <- lm(mpg ~ hp + cyl, data = mtcars)

kable(tidy(mod), digits = 3)

term estimate std.error statistic p.value

(Intercept) 36.908 2.191 16.847 0.000

hp -0.019 0.015 -1.275 0.213

cyl -2.265 0.576 -3.933 0.000

Of course, cleaning these up can take some work. For example,
we’d need to rename a bunch of fields to make this table have the
labels we wanted (e.g., to turn hp into Horsepower).

We often need APA-formatted statistics. We can compute them
first, and then print them inline.

ts <- with(mtcars, t.test(hp[cyl == 4], hp[cyl ==

6]))

There’s a statistically-significant difference in horsepower for 4- and
6-cylinder cars (t(11.49) = −3.56, p = 0.004).

To insert these stats inline I wrote e.g. round(ts$parameter, 2)

inside an inline code block.8 8 APA would require omission of the
leading zero. papaja::printp() will let
you do that, see below.

Note that rounding can occasionally get you in trouble here, be-
cause it’s very easy to have an output of p = 0 when in fact p can
never be exactly equal to 0. Nonetheless, this can help you prevent
rounding errors and the wrath of statcheck.

Exercises

1. Using the mtcars dataset, insert a table and a graph of your choice
into the document.9 9 If you’re feeling uninspired, try

hist(mpg).



rmarkdown for writing reproducible scientific papers 9

Writing APA-format papers

(Thanks to Frederick Aust for contributing this section!)
The end-game of reproducible research is to knit your entire paper.

We’ll focus on APA-style writeups. Managing APA format is a pain
in the best of times. Isn’t it nice to get it done for you?

We’re going to use the papaja package. papaja is a R-package
including a R Markdown template that can be used to produce docu-
ments that adhere to the American Psychological Association (APA)
manuscript guidelines (6th Edition).

Software requirements

To use papaja, make sure you are using the latest versions of R and
RStudio. If you want to create PDF- in addition to DOCX-files you
need TeX 2013 or later. Try MikTeX for Windows, MacTeX for Mac,
or TeX Live for Linux. Some Linux users may need a few additional
TeX packages for the LaTeX document class apa6 to work.10 10 For Ubuntu, we suggest run-

ning: sudo apt-get install

texlive texlive-publishers

texlive-fonts-extra

texlive-latex-extra

texlive-humanities lmodern.

Installing papaja

papaja has not yet been released on CRAN but you can install it from
GitHub.

# Install devtools package if necessary

if (!"devtools" %in% rownames(installed.packages())) install.packages("devtools")

# Install papaja

devtools::install_github("crsh/papaja")

Creating a document

The APA manuscript template should now be available through the
RStudio menus when creating a new R Markdown file.

When you click RStudio’s Knit button papaja, rmarkdown, and
knitr work together to create an APA conform manuscript that in-
cludes both your manuscript text and the results of any embedded R
code.

Note, if you don’t have TeX installed on your computer, or if you
would like to create a Word document replace output: papaja::apa6_pdf

with output: papaja::apa6_word in the document YAML header.
papaja provides some rendering options that only work if you

use output: papaja::apa6_pdf. figsintext indicates whether fig-
ures and tables should be included at the end of the document—as
required by APA guidelines—or rendered in the body of the docu-
ment. If figurelist, tablelist, or footnotelist are set to yes a list

http://github.com/crsh
http://de.wikipedia.org/wiki/TeX
http://miktex.org/
https://tug.org/mactex/
http://www.tug.org/texlive/


rmarkdown for writing reproducible scientific papers 10

Figure 1: papaja’s APA6 template is
available through the RStudio menues.

Figure 2: The *Knit* button in the
RStudio.



rmarkdown for writing reproducible scientific papers 11

of figure captions, table captions, or footnotes is given following the
reference section. lineno indicates whether lines should be continu-
ously numbered through out the manuscript.

Reporting statistical analyses

apa_print() facilitates reporting of statistical analyses. The function
formats the contents of R objects and produces readily reportable
text.

recall_anova <- afex::aov_car(Recall ~ (Task *
Valence * Dosage) + Error(Subject/(Task *
Valence)) + Dosage, data = mixed_data, type = 3)

recall_anova_results <- apa_print(recall_anova,

es = "pes")

recall_anova_results_p <- apa_print(recall_anova,

es = "pes", in_paren = TRUE)

Now, you can report the results of your analyses like so:

Item valence (‘ r anova_results_p f ullValence‘) and the task affected
recall performance, ‘ r anova_results f ullTask‘; the dosage, however,
had no effect on recall, ‘ r anova_results f ullDosage‘. There was no
significant interaction.

apa_print() also creates reportable tables—in this case a com-
plete ANOVA table. You can include the table into the document by
passing recall_anova_results$table to apa_table(). Remeber to
include the results = "asis" argument in the chunk options of the
chunk that generates the table.

apa_table(recall_anova_results$table, align = c("lrcrrr"),

caption = "ANOVA table for the analyis of the example data set.",

note = "This is a table created using R and papaja.")

Cross-referencing

papaja enables the use of bookdown cross-referencing syntax as de-
tailed in the bookdown documentation. Generally, a cross-reference
to a figure, table, or document section can be done by using the syn-
tax \@ref(label). If you set a figure caption in a code chunk via
the chunk option fig.cap = "This is my figure caption.", the
label for that figure is based on the label of the code chunk, e.g., if
the chunk label is foo, the figure label will be fig:foo. If you used
knitr::kable() or apa_table() to create a table, the label for that
table is, again, based on the label of the code chunk, e.g., if the chunk
label is foo, the figure label will be tab:foo.

https://bookdown.org/yihui/bookdown/cross-references.html


rmarkdown for writing reproducible scientific papers 12

Bibiographic management

It’s also possible to include references using bibtex, by using @ref

syntax. An option for managing references is bibdesk, which inte-
grates with google scholar.11 11 But many other options are possible.

With a bibtex file included, you can refer to papers. As an exam-
ple, @nuijten2016 results in the in text citation “Nuijten et al. [2016]”,
or cite them parenthetically with [@nuijten2016] [Nuijten et al.,
2016]. Take a look at the papaja APA example to see how this works.

citr is an R package that provides an easy-to-use RStudio addin
that facilitates inserting citations. The addin will automatically look
up the Bib(La)TeX-file(s) specified in the YAML front matter. The
references for the inserted citations are automatically added to the
documents reference section.

Once citr is installed (install.packages("citr")) and you have
restarted your R session, the addin appears in the menus and you can
define a keyboard shortcut to call the addin.

Exercise

Make sure you’ve got papaja, then open a new template file. Com-
pile this document, and look at how awesome it is. (To compile you
need texlive, a library for compiling markdown to PDF, so you may
need to wait and install this later if it’s not working).

Try pasting in your figure and table from your other RMarkdown
(don’t forget any libraries you need to make it compile). Presto,
ready to submit!

For a bit more on papaja, check out this guide.

Further Frontiers

Other dissemination methods

We didn’t spend as much time on it here, but one of the biggest
strengths of RMarkdown is how you can easily switch between
formats. For example, we made our slides in RMarkdown using
revealjs (ioslides is also a good option).

We also like to share HTML RMarkdown reports with collabo-
rators using the RPubs service or hosting of your own choice. It’s
incredibly easy to share your work publicly this way – you just push
the “publish” button in the upper right hand corner of the RStudio
viewer window. Then you set up an account, and you are on your
way. We find this is a great method for sending analysis writeups –
no more pasting figures into email! Hosting HTML files on your own
page is also easy if you know how that works.

http://bibdesk.sourceforge.net/
https://rstudio.github.io/rstudioaddins/
https://rstudio.github.io/rstudioaddins/#keyboard-shorcuts
https://rpubs.com/YaRrr/papaja_guide
https://libscie.github.io/rmarkdown-workshop
http://rpubs.com


rmarkdown for writing reproducible scientific papers 13

And of course because not everyone uses R, you can simply click
on the knit options at the top of the code window to switch to a
Word output format. Then your collaborators can edit the text in
Word (or upload to Google docs) and you can re-merge the changes
with your reproducible code. This isn’t a perfect workflow yet, but
it’s not too bad.

Computational reproducibility concerns

Once you provide code and data for your RMarkdown, you are most
of the way to full computational reproducibility. Other people should
be able to get the same numbers as you for your paper!

But there’s still one wrinkle. What if you use linear mixed effect
models from lme4 and then the good people developing that package
make it better – but that changes your numbers? Package versioning
(and versioning on R itself) is a real concern. To combat this issue,
there are a number of tools out there.

• The packrat package is a solution for package versioning for R. It
downloads local copies of all your packages, and that can ensure
that you have all the right stuff to distribute with your work.12 12 We’ve found that this package is a

bit tricky to use so we don’t always
recommend it, but it may improve in
future.

• Some other groups are using Docker, a system for making virtual
machines that have everything for your project inside them and
can be unpacked on other machines to reproduce your exact envi-
ronment. We haven’t worked with these but they seem like a good
option for full reproducibility.

• The checkpoint package allows you to install packages exactly as
they were on CRAN (the main repository for packages), so you
can “freeze” your package versions (more info here).

If you don’t want to pursue these heavier-weight options, one
simple thing you can do is end your RMarkdown with a printout of
all the packages you used. Do this by running sessionInfo.

sessionInfo()

## R version 3.4.0 (2017-04-21)

## Platform: x86_64-redhat-linux-gnu (64-bit)

## Running under: Fedora 26 (Workstation Edition)

##

## Matrix products: default

## BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8

## [2] LC_NUMERIC=C

https://cran.r-project.org/web/packages/checkpoint/index.html


rmarkdown for writing reproducible scientific papers 14

## [3] LC_TIME=en_US.UTF-8

## [4] LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_US.UTF-8

## [6] LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8

## [8] LC_NAME=C

## [9] LC_ADDRESS=C

## [10] LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8

## [12] LC_IDENTIFICATION=C

##

## attached base packages:

## [1] stats graphics grDevices utils

## [5] datasets methods base

##

## other attached packages:

## [1] devtools_1.13.2 broom_0.4.2

## [3] ggplot2_2.2.1 knitr_1.16

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.11 highr_0.6

## [3] formatR_1.5 compiler_3.4.0

## [5] plyr_1.8.4 bindr_0.1

## [7] tools_3.4.0 digest_0.6.12

## [9] memoise_1.1.0 evaluate_0.10.1

## [11] tibble_1.3.3 gtable_0.2.0

## [13] nlme_3.1-131 lattice_0.20-35

## [15] pkgconfig_2.0.1 rlang_0.1.1

## [17] psych_1.7.5 yaml_2.1.14

## [19] parallel_3.4.0 bindrcpp_0.2

## [21] withr_1.0.2 dplyr_0.7.1

## [23] stringr_1.2.0 rprojroot_1.2

## [25] grid_3.4.0 tufte_0.2

## [27] glue_1.1.1 R6_2.2.1

## [29] foreign_0.8-67 rmarkdown_1.6

## [31] reshape2_1.4.2 tidyr_0.6.3

## [33] magrittr_1.5 codetools_0.2-15

## [35] backports_1.1.0 scales_0.4.1

## [37] htmltools_0.3.6 assertthat_0.2.0

## [39] mnormt_1.5-5 colorspace_1.3-2

## [41] labeling_0.3 stringi_1.1.5

## [43] lazyeval_0.2.0 munsell_0.4.3



rmarkdown for writing reproducible scientific papers 15

References

Michèle B Nuijten, Chris HJ Hartgerink, Marcel ALM van Assen,
Sacha Epskamp, and Jelte M Wicherts. The prevalence of statis-
tical reporting errors in psychology (1985–2013). Behavior research
methods, 48(4):1205–1226, 2016.


	Introduction
	Getting Started
	Structure of an RMarkdown file
	Markdown syntax
	Adding more code (Tables and Graphs)
	Writing APA-format papers
	Further Frontiers

